Home » Astrophotography Gear » My DIY Equatorial Platform, in Pictures
Astrophotography Gear BLOG Tutorial

My DIY Equatorial Platform, in Pictures

DIY EQ Mount

Astrophotography is possible with a Dobsonian and equatorial platform!

I’d been frustrated by the lack of ability for my Zhumell Z10 10″ Dobsonian reflector telescope to track the night sky. After MUCH research, I found that the cheapest way for me to get basic (and automatic) sidereal tracking is to build (or buy) a motorized equatorial platform, which required absolutely no modification to my Dobsonian telescope. The best part about it all is that it WORKS! Just point it to the celestial pole (north or south), level it, sit the scope on top, turn on the motor. Done. Here is my build, in pictures.

Sponsored advertisement

The proof

Oh, so you need proof? Well, in late 2012 I started with astrophotography with this setup, and these are a few of the shots I managed to get with it — some of my first astrophotography, ever! It’s by all means not a wonderful example of AP, but at the time, it was amazing to me!

M42 with Dobsonian
Double Cluster with Dobsonian
M51 with a Dobsonian
Sombrero Galaxy with a Dobsonian

The plans

You can also download my old SketchUp plans right here, if you want. It might give you an idea of what I was getting at!

The photos

 

Like this article enough to buy the author a drink? (a small donation of $1-$20)

About the author

Cory Schmitz

Co-founder of PhotographingSpace.com, co-owner of several telescopes and mounts, too many cameras, and not enough hard drives, Cory is an American expat living in South Africa with his wife, Tanja Schmitz.

An avid astrophotographer for timelapse, deep-space imaging, lunar, planetary, and star trail imagery, he is an all-around jack-of-most-trades for night-sky photography.

He is also an internationally published and commissioned astrophotographer, where his photos have been used in multiple online and print publications.

35 Comments

Click here to post a comment

      • Hi Cory,

        That looks great indeed. Would you have all the details, like, dimensions, angels , material used, motor used etc. I know since you’ve sold it, you may not remember, but once again this looks simple enough and possibly one of the best designs out there.

        I’m an beginner, this is only my second telescope (awaiting shipment). I earlier had used a cheap 120mm telescope and remember how frustrating it was to watch the object float out of the view, but buying a motorized company manufactured telescope would be very expensive indeed.

        Thanks
        Gaurav

        • Hi Gaurav! Thanks! It was a fun build.

          I remember most of the materials I used. The dimensions not so much, because you have to build it somewhat based on your latitude. I’ll update the post in the next few days with some more detail from what I can remember.

          If you have the building skills and tools, it can be very cheap, but, I can tell you it is also worth it to move on to a proper motorized mount!

  • Sorry for the delay in replying. New house, big section and I have my work cut out. I have to admit the Gaurav has asked all my questions except did you use an online spreadsheet? I do appreciate your comment about using a “proper” EQ mount but the platform is suitable for my purposes. My wife and I expect to run public nights on behalf of the local astronomical society and a platform will be easy to transport, set up and use. Cheers.

    • No worries, Mike.

      I looked at some of the spreadsheets, but in the end did not use them. I instead created a 3D model using SketchUp to find the exact angles I needed (the image of the cone), and then used that to create a template to print out and use when building the curved guides.

      Yes, for your purposes an EQ platform would be great! More bang for the buck. It’s pretty much throw-and-go, especially for visual use.

      Like I said — it’s on my list to update this post with all the details I can remember, soon.

      -Cory

  • I’d also love to get some directions on how to build one of these ( I’m having a very hard time finding clean directions online, there are lots but they are messy and hard to understand ), I like that you used the Celestron motor drive, as many of the designs I found use a complicated DIY motor system I just don’t want to take on.

    This design looks quite simple and clean and I think I could figure it out as long as I knew how you used sketchup to figure out the angles on the curved track portion, and the length to the rear pivot bearing. But I don’t know for sure because I think the calculations are a bit trickier than that.

    I’d very much like to take this project on, and I like your design.

    Did it work good when you had it?

    • I’m glad I’m not the only one having difficulty deciding which variant of an EQ platform to go with. I have pretty much decided that a vertical north/south sector has to be easier to set up (half the number of roller bearings to start with) and a pivot for the rear south/north sector (another less complicated item to make). However, while there are plenty of constructed examples, there seems to be little on how to design them. Messy is an understatement.

      • Messy is definitely an understatement. I’ve looked through dozens of pages and still don’t have a clear image of the whole construction on these things… Mind you I’ve been specifically looking for a model that uses a Celestron motor drive, because like I mentioned, like 3/4 of the designs I found have a goofy DIY project for the motor, with a few parts from John Doe’s website, and Joe Blows hardware store….

        • Hi Andrew and Mike, apologies for the delay!

          You guys are having the same problems I did — lots of “designs,” but not a lot of good instructions for the build. It took me a long time to figure out exactly how they really worked and then come up with my own simplified design for it.

          Believe it or not, it actually tracked really well, especially being made out of wood, with a heavy telescope on it, and just the inexpensive little Celestron motor drive. I was able to able to do some pretty good DSO work (fast scope, f/5 newt), and it helped immensely with planetary. I was successfully tracking and shooting Jupiter and Saturn at ~4,800mm (two 2x Barlow lenses on my DSLR). I have some raw video on Youtube with an example, I will link to that as well.

          I apologize I haven’t had a chance the last week to update my article with more details, but I PROMISE I will soon! I have recently found some of the images I created using the setup you see above, and I even found the original SketchUp file I will post for download. Hopefully using that, you will be able to see how I created and designed the curved vertical sections, and the angles and such.

          Cheers!
          Cory

        • Hello!

          I apologize for the delay (again…) but I quickly updated the article with a download link to the old SketchUp plans I used, and the template I created for the roller guides. It might help a little as well.

          Hope it helps!

          Cheers,
          Cory

  • Also, how well does it actually track?
    I’ve got a 8″ skywatcher dobsonian, and I’d like to at least make use of my digital cameras small 15 second exposure time to maybe take a few good images of say the greater orions nebula to stack into something worth while.

    -Thanks

    • Hi Andrew,

      As I replied above — it actually tracked quite well. I was able to do some pretty good DSO work at 1200mm f/5 (the scope above, same setup, up to 45-60 second exposures at times), and it was great for extremely-high magnification lunar and planetary.

      Cheers!
      Cory

  • My problem is that I think too much about the best way to do something. I need to stop. I haven’t done anything for a while as the new house and grounds have taken up most of my free time. However this also is about to stop for a while. Scope comes out of the box in the next couple of days, it will need collimation. Then back to the EQ platform. Cheers.

  • Hi,

    Great article. Could you post a complete parts list required for us to build our own versions of this mount?

    Regards

  • This is an excellent design and much cleaner than most plans I’ve seen out there. I would really like to know how you determine the curve on the two top pieces of wood on the T. I built one of these but the object I’m looking at tends to drift upward in the eyepiece. Obviously my angle on it is too high, the scope points down quickly.

    • Hi Billa48,

      Thanks, I wanted to simplify things as much as I could while still getting decent performance. I used SketchUp to help determine to angle for my approximate latitude and the curve (the first two photos), and then further refined the design using a hinged jig I built to rotate around the axis with a clamped sander (the last four photos).

      Cheers,
      Cory

      • Why do you have a bolt through bottom and top of the platform?

        It feels counter to the movement of the tilting of the platform?

        • Hi Andy,

          Good catch! Actually, that bolt is simply for transport purposes. I bolt the top and the bottom of the platform together so when I carried it around the two pieces didn’t fall apart. 🙂

          Cheers,
          Cory

          • Of course! I like the simplicity of your design would you please explain
            Why did you use the jig when you have already printed the form of your VNS bearings ( I have a copy from reinervogel.net so ready to go)

            With the single pivot bearing on the south end is the angle of that mounting critical or do I just need to make sure that the table top is level?

            Was the commercial motor upto the job? ( or do i need some gears etc)

            many thanks
            andy

          • Hi Andy,

            I used the jig to further refine the curve because my printed VNS shape wasn’t quite perfect enough for me after a while. The jig does it much better.

            I don’t believe the angle of the pivot is critical, but the height vs. the front bearing is. Keeping things level is always helpful! Better safe than sorry.

            The motor handled things without a problem, but I did run into an issue with the battery not lasting long enough, so I created an external power source to keep everything stable.

            I’m by no means a pro at this, because it was my first and only platform I built. However, I put a lot of time into tweaking it. 🙂

            Good luck! It was awesome to use. Nothing like viewing or shooting Jupiter and Saturn with a 4x Barlow and not seeing drift in the eyepiece. 🙂

            Cheers,
            Cory

  • Hey Cory
    Great build. I’m a bit late to the party here but just finished building one of my own and am using the same motor. I noticed in your last post you mentioned you rewired to a better power supply. Do you recall any details of what you used?
    Thanks
    Matt

  • Nice post, Cory.

    Only a few questions:

    What material did you use for the strips in the north sectors contact surface?
    How do you make the motor shaft? It seems is made of several parts.

    Thanks in advance

    • Hi Sergio,

      Thanks for the question! In order to keep things lightweight and solid/smooth for the bearings to roll on, I used thin aluminum sheet metal. At first it was a little too slick for the bearing, but after I lightly sanded it to rough it up slightly things worked well. I suppose putting a hard rubber bushing around the motor axle would also have worked well!

      As for the motor shaft, I used a machine screw, bolts, and bushings to create a cheap and dirty bearing that would support the weight so the motor itself wouldn’t have to because it’s so small. Basically, you want the shaft to be able to spin freely in the bushings so adding the motor is the easy part. I was determined to just use pieces and parts around my garage for this, so I am sure there is a much better way to make it. However, something to note is that a different size roller bearing that makes contact with the sector surface will require different motor speeds to accurately track. That is math I don’t want to do now! However, it can be noted that the motor shaft bearing diameter was somewhere in the vicinity of 2cm or so.

      Cheers!
      Cory

  • Hey Cory
    You mention the back height is important. I am about 36 latitude. Does that change the curve of the front pieces or just affect the height of the back and how would I figure them? The base of me scope is 24 inches square.
    Thank you

    • Hi Terry,

      Yes — the back height is important, but it wouldn’t change the curve — that is just to help you aim the axis at the celestial pole.

      I used SketchUp to create a 3D model of the cone and printed out a template from there. You can get my SketchUp plans above, if you like. It might give you a better idea of what I visualized!

      Cheers,
      Cory

From PhotographingSpace.com:

From our Friends at PrimaLuceLab

Sponsored advertisement

Astrophotography Photoshop Actions!

Make your Milky Way POP and finish off your photos like a pro with our Photoshop Action Packs optimized specifically for astrophotography!

YOU can shoot amazing AP!